Module/Course Description/Syllabus

<table>
<thead>
<tr>
<th>Module:</th>
<th>International Logistics (IL)</th>
</tr>
</thead>
</table>
| **Module courses**: | **Transport Logistics (TL)**
Production & Warehouse Logistics (PWL)
Project Management (PM)
Seminar on International Logistics (SoIL)** |
| **Course Title**: | **Transport Logistics** |
| **Recommended alternative module or courses**: | - |
| **Course of studies**: | **Business Administration** |
| **HISinOne Code**: | **1182103** |
| **Study Cycle**: |
- first
- second
- third
- short |
| **Frequency**: |
- winter term
- summer term
- each semester |
| **Language competence Level**: | |
| **Responsible for the Module/Course**: | **Prof. Dr.-Ing. O. Kunze** |
| **Lecturer/s**: | **Prof. Dr.-Ing. O. Kunze** |
| **Type of course**: |
- optional
- compulsory |
| **Mode of delivery**: | **face-to-face** |
| **Language of Instruction**: |
- English
- German
- Level of course:
- 5th semester |
| **Teaching Methods**: |
- Lecture (50%)
- Volume:
- hours per semester week 03
- Homework Exercises (25%) => group work
- Literature Research Project & Presentation (25%) => group work |
| **Work parameters**: |
- Contact hours in lecture form
- Exercices (hours)
- Self-studies (hours)
- All together (hours)
- 45
- 20
- 25
- ECTS-Credits: 03
- Length of programme: 1 semester |
| **Number of Participants**: | **approx. 20** |
| **Use for other studies**: | **Supply Chain Management** |
Prerequisites:

Statistics
Fundamental Mathematics
English
MS-Office (Excel, Word, Powerpoint)

Learning outcomes:

- Ability to detect optimization problems in logistics;
- Ability to model logistical problems formally as OR-models;
- Ability to solve problems by use of appropriate SW-tools;
- Understand potentials and limitations of optimization tools in logistics

Content:

- Logistics in a nutshell
- Optimization basics
- Brief summary of relevant OR-models and suitable algorithms, as e.g.
 - Shortest Path Problem SPP
 - Vehicle Routing Problem VRP & variances thereof (as e.g. VRP-TW)
 - Facility Location Problem FLP & variances thereof (as e.g. cml-FLP)
 - Chinese Postman Problem CPP
 - ...
- Case studies:
 - problem modelling in different vertical industries
 - solving formally modelled problems by means of appropriate SW-tools
Examination Regulations:

- Oral Exam: 50%
- Group Exercises: 25%
- Group Literature Research Project: 25%

Assessment methods/components:

Basis for Assessment:
- Oral Exam: quality of oral answers
- Group Exercise: exercise result documentation & presentation
- Literature Research Project: presentation

Assessment criteria:

- HNU-Standard

Planned learning activities and teaching methods:

See above
Required reading and other learning resources/tools:

- Hillier/Lieberman
 Introduction to Operations Research

- Brandimarte/Zotteri
 Introduction to Distribution Logistics

Recommended reading and other learning resources/tools:

- Selected journal articles on operations research in transport logistics

Document Version: 1.0

Document Date: 12.10.2017

Document was created by: ok

Valid from: 12.10.2017

Updated: by

Additional information: